POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)

COURSE DESCRIPTION CARD - SYLLABUS

Course name Solid state physics [S2IMat1>FCS]

Course			
Field of study Materials Engineering		Year/Semester 1/1	
Area of study (specialization)		Profile of study general academic	:
Level of study second-cycle		Course offered in Polish	
Form of study full-time		Requirements compulsory	
Number of hours			
Lecture 15	Laboratory classe 0		Other (e.g. online) 0
Tutorials 15	Projects/seminar 0	S	
Number of credit points 3,00			
Coordinators		Lecturers	
dr hab. Izabela Szafraniak-Wiza p izabela.szafraniak-wiza@put.pozr			

Prerequisites

Basic knowledge of chemistry, physics and materials science.Logical thinking, use of the information obtained from library and Internet. Understanding the need for learning and acquiring new knowledge

Course objective

The knowledge of the relationships between the crystallographic structures and physical properties. The knowledge of the basic solid state concepts and theories.

Course-related learning outcomes

Knowledge:

1. the student has knowledge about the basis concepts and theories of solid state physics. k_w01 k_w08 k_w10

2.the student has knowledge about modern trends and important research fields of the solid state physics. k_w01, k_w08 $\,$

Skills:

1. the student can explain the basis facts and the solid state theories and can relate them to materials

science. k_u01, k_u02, k_u11 2. the student can relate the physical properties and crystal structure. k_u01, k_u02, k_u11

Social competences:

1. the student can collaborate in order to obtain and implement the new knowledge. k_k03

2. the student is aware of importance of solid state physics in modern science, industry and society. k_k02

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Learning outcomes presented above are verified as follows:

Lecture: Written test at the end of the semester

Tutorias: Written test at the end of the semester and student activity in whole semester

Programme content

- 1. Basic crystallography
- 2. Crystallization processes
- 3. The influence of crystallographic structures on physical properties.
- 4. Optical properties of crystals
- 5. Dielectrics, piezoelectrics, pyroelectrics and ferroelectrics.
- 6. Electronic band theory
- 7. Semiconductors
- 8. Superconductivity
- 9. Surface physics

Course topics

The selected theories on solid state and the influence of crystal structure on the physicochemical properties of solids

Teaching methods

Lecture: multimedia presentation Tutorials: problem solving, discussion

Bibliography

Basic

 C. Kittel, Wstęp do fizyki ciała stałego, Wydawnictwo Naukowe PWN, Warszawa, 1999
N.W. Ashcroft, N.D. Mermin, Fizyka ciała stałego, Państwowe Wydawnictwo Naukowe, Warszawa, 1986
Additional
M. Jurczyk, Nanomateriały, Wydawnictwo Politechniki Poznańskiej, Poznań 2001

 M. Burczyk, Nanomateriały, Wydawnictwo Politechniki Poznańskiej, Poznań 2001
L. A. Dobrzański, Wprowadzenie do nauki o materiałach, Wydawnictwo Politechniki Śląskiej, Gliwice 2007

3. M. Blicharski, Wstęp do inżynierii materiałowej, Wydawnictwo Naukowo-Techniczne, 2009

Breakdown of average student's workload

	Hours	ECTS
Total workload	70	3,00
Classes requiring direct contact with the teacher	35	2,00
Student's own work (literature studies, preparation for laboratory classes/ tutorials, preparation for tests/exam, project preparation)	35	1,00